题目内容

18.设F1,F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的离心率为(  )
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\sqrt{2}$D.2

分析 利用题设条件和双曲线性质在三角形中寻找等量关系,得出a与b之间的等量关系,运用双曲线的a,b,c的关系和离心率公式即可求出双曲线的离心率.

解答 解:依题意|PF2|=|F1F2|,可知三角形PF2F1是一个等腰三角形,
F2在直线PF1的投影是其中点,
且F2到直线PF1的距离等于双曲线的实轴长,
由勾股定理可知|PF1|=4b,
根据双曲定义可知4b-2c=2a,整理得c=2b-a,
代入c2=a2+b2整理得3b2-4ab=0,
求得$\frac{b}{a}$=$\frac{4}{3}$,即b=$\frac{4}{3}$a,
则c=$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{5}{3}$a,
即有e=$\frac{c}{a}$=$\frac{5}{3}$.
故选:A.

点评 本题主要考查双曲线的定义、方程和性质,突出了对计算能力和综合运用知识能力的考查,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网