题目内容

已知f(x)为R上的可导函数,且对?x∈R,均有f(x)>f′(x),则有( )
A.e2013f(-2013)<f(0),f(2013)<e2013f(0)
B.e2013f(-2013)<f(0),f(2013)>e2013f(0)
C.e2013f(-2013)>f(0),f(2013)<e2013f(0)
D.e2013f(-2013)>f(0),f(2013)>e2013f(0)
【答案】分析:根据题目给出的条件:“f(x)为R上的可导函数,且对?x∈R,均有f(x)>f'(x)”,结合给出的四个选项,设想寻找一个辅助函数g(x)=
这样有以e为底数的幂出现,求出函数g(x)的导函数,由已知得该导函数大于0,得出函数g(x)为减函数,利用函数的单调性即可得到结论.
解答:解:令,则
因为f(x)>f'(x),所以g′(x)<0,所以函数g(x)为R上的减函数,
所以g(-2013)>g(0),
,所以e2013f(-2013)>f(0),
,所以f(2013)<e2013f(0).
故选C.
点评:本题考查了导数的运算,由题目给出的条件结合选项去分析函数解析式,属逆向思维,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网