题目内容
【题目】已知数列
中各项都大于1,前
项和为
,且满足
.
(1)求数列
的通项公式;
(2)令
,求数列
的前
项和
;
(3)求使得
对所有
都成立的最小正整数
.
【答案】(1)
;(2)
;(3)
.
【解析】
试题分析:(1)首先令
,利用
,求解数列的首项,再令
,得到
,然后两式相减,得到数列的递推公式
,可知数列是等差数列,写出通项公式;(2)根据上一问的结果,代入可得数列
的通项公式,采用裂项相消法求和;(3)对恒成立的问题,可转化为
,从而求得最小正整数
.
试题解析:(1)当
时,
,
解之得
,(
舍去)
由
①
得
②
②-①得 ![]()
即![]()
由于
,故![]()
可见数列
为等差数列,公差是3,首项是2,
所以
.
(2)
,
所以![]()
![]()
![]()
即数列
的前
项和
.
(3) 使得
对所有
都成立的
必须满足
,即
,故满足要求的最小正整数
为6.
练习册系列答案
相关题目
【题目】某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:
组别 | 频数 | 频率 |
145.5~149.5 | 8 | 0.16 |
149.5~153.5 | 6 | 0.12 |
153.5~157.5 | 14 | 0.28 |
157.5~161.5 | 10 | 0.20 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 |
|
|
合计 |
|
|
(1)求出表中字母
所对应的数值;
(2)在给出的直角坐标系中画出频率分布直方图;
(3)估计该校高一女生身高在149.5~165.5
范围内有多少人?