题目内容
函数y=-x2-4x+1,x∈[-3,3]的值域为( )
| A.[-∞,5] | B.[5,+∞] | C.[-20,5] | D.[-4,5] |
∵f(x)=y=-x2-4x+1
=-(x+2)2+5
对称轴为x=-2,开口向下.
所以在[-3,-2]上递增,在[-2,3]上递减.
且3离对称轴距离远.
所以当x=3时,有最小值为f(3)=-20.
当x=-2时,函数有最大值为f(2)=5.
即值域为[-20,5].
故选C.
=-(x+2)2+5
对称轴为x=-2,开口向下.
所以在[-3,-2]上递增,在[-2,3]上递减.
且3离对称轴距离远.
所以当x=3时,有最小值为f(3)=-20.
当x=-2时,函数有最大值为f(2)=5.
即值域为[-20,5].
故选C.
练习册系列答案
相关题目