题目内容
正项等比数列{an}的前n项和为Sn,a4=16,且a2,a3的等差中项为S2.
(1)求数列{an}的通项公式;
(2)设bn=
,求数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)设bn=
| n |
| a2n-1 |
(1)由题意可得,a2+a3=2S2=2a1+2a2
∴
∵q>0
解方程可得,a1=2,q=2
∴an=2n
(2)∵bn=
=
∴Tn=
+
+…+
=
+
+…+
+
两式相减可得,
=
+
+…+
-
=
-
=
-
∴Tn=
-
∴
|
∵q>0
解方程可得,a1=2,q=2
∴an=2n
(2)∵bn=
| n |
| a2n-1 |
| n |
| 22n-1 |
∴Tn=
| 1 |
| 2 |
| 2 |
| 23 |
| n |
| 22n-1 |
| Tn |
| 4 |
| 1 |
| 23 |
| 2 |
| 25 |
| n-1 |
| 22n-1 |
| n |
| 22n+1 |
两式相减可得,
| 3Tn |
| 4 |
| 1 |
| 2 |
| 1 |
| 8 |
| 1 |
| 22n-1 |
| n |
| 22n+1 |
(1-
| ||||
1-
|
| n |
| 22n+1 |
=
2-
| ||
| 3 |
| n |
| 22n+1 |
∴Tn=
8-
| ||
| 9 |
| 4n |
| 6×22n |
练习册系列答案
相关题目