题目内容

设函数f(x)=
-2,x>0
x2+bx+c,x≤0
若f(-4)=f(0),f(-2)=0,则关于x的不等式f(x)≤1的解集为(  )
A.(-∞,-3]∪[-1,+∞)B.[-3,-1]
C.[-3,-1]∪(0,+∞)D.[-3,+∞)
∵函数f(x)=
-2,x>0
x2+bx+c,x≤0

f(-4)=f(0),f(-2)=0,
16-4b+c=c
4-2b+c=0

解得b=c=4,
f(x)=
-2,x>0
x2+4x+4,x≤0

∴当x>0时,f(x)=-2≤1;
当x≤0时,
由f(x)=x2+4x+4≤1,
解得-3≤x≤-1.
综上所述,x的不等式f(x)≤1的解集为{x|x>0,或-3≤x≤-1}.
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网