题目内容

已知函数f(x)=ax3+bx2+cx+d(a≠0),当x=1时有极大值4,当x=3时有极小值0,且函数图象过原点,则f(x)的表达式为(  )
A.x3+6x2+9xB.x3-6x2-9xC.x3-6x2+9xD.x3+6x2-9x
f′(x)=3ax2+2bx+c(a≠0),
∵x=1时有极大值4,当x=3时有极小值0
∴f′(1)=3a+2b+c=0     ①
f′(3)=27a+6b+c=0     ②
f(1)=a+b+c+d=4      ③
又函数图象过原点,所以  d=0   ④
①②③④联立得  a=1,b=-6,c=9
故函数f(x)=x3-6x2+9x
故选  C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网