题目内容
下面的程序框图给出数列{an}(n∈N*),下同)的递推关系,计算并输出数列{an}和{
}前若干项之和S、T.
(1)若输入p=1,S满足80<S<100,求输入的n的值;
(2)若输入p>1,n,求输出的T的值.
(用关于p、n的代数式表示)
(1)P=1时,an=an-1+1,
{an}(n∈N*)是首项为1,公差为1的等差数列…(1分),
所以an=n…(2分),
S=a1+a2+…+an=
…(3分),
解得80<S<100,即160<n(n+1)<200,
∴
,
∵n∈N*,
∴n=13.…(5分).
(2)P>1时,an+1=pan+1,
…(7分),
∴
(n∈N*)是首项为1+
=
,公比为p的等比数列…(8分),
所以
,
…(9分),
,…(11分),
所以:
=
=
.…(13分).
分析:(1)P=1时,由an=an-1+1,知an=n,所以S=a1+a2+…+an=
,解得80<S<100,由此能求出n的值.
(2)P>1时,an+1=pan+1,
,所以
,
,
,由此能求出T的值.
点评:本题以循环结构为载体,考查数列的应用,十分巧妙,体现了出题者的智慧,是一道好题.解题时要认真审题,注意递推公式的合理运用.
{an}(n∈N*)是首项为1,公差为1的等差数列…(1分),
所以an=n…(2分),
S=a1+a2+…+an=
解得80<S<100,即160<n(n+1)<200,
∴
∵n∈N*,
∴n=13.…(5分).
(2)P>1时,an+1=pan+1,
∴
所以
所以:
=
=
分析:(1)P=1时,由an=an-1+1,知an=n,所以S=a1+a2+…+an=
(2)P>1时,an+1=pan+1,
点评:本题以循环结构为载体,考查数列的应用,十分巧妙,体现了出题者的智慧,是一道好题.解题时要认真审题,注意递推公式的合理运用.
练习册系列答案
相关题目