题目内容

正数数列{an}的前n项和Sn,满足4Sn=(an+1)2,试求:
(1)数列{an}的通项公式;
(2)设bn=,数列的前n项的和为Bn,求证:Bn
(3)设cn=an•(n,求数列{cn}的前n项和Tn
【答案】分析:(1)由4Sn=(an+1)2,利用迭代法能求出an=2n-1.
(2)由==,利用裂项求和法能够证明Bn
(3)由an=2n-1,知cn=an•(n=(2n-1)•(n,利用错位相减法能够求出数列{cn}的前n项和Tn
解答:解:(1)∵4Sn=(an+1)2
∴4Sn-1=(an-1+1)2,n≥2,
作差,得4(Sn-Sn-1)=(an+1)2-(an-1+1)2
∴4an=(an+an-1+2)(an-an-1),
整理,得(an+an-1)(an-an-1-2)=0.
∵{an}正数数列,∴an-an-1=2,
由2=a1+1,得a1=1,
∴an=2n-1.…(4分)
(2)∵==
∴数列的前n项的和
Bn=…+
=
故Bn.…(9分)
(3)∵an=2n-1,
∴cn=an•(n=(2n-1)•(n
∴Tn=c1+c2+c3+…+cn
=1+3•+5•(3+…+(2n-3)•(n-1+(2n-1)•(n
Tn=1•+3•(3+5•(4…+(2n-3)•(n+(2n-1)•(n+1
=+2•(2+2•(3+2•(4+…+2•(n-(2n-1)•(n+1
=2×[+(2+(3+(4+…+(n]--(2n-1)•(n+1
=2×--(2n-1)•(n+1
=1-(n--(2n-1)•(n+1
=-(n-(2n-1)•(n+1
∴Tn=1--(2n-1)n+1=1-
点评:本题考查数列的通项公式的求法,考查不等式的证明,考查数列的前n项和的求法,解题时要认真审题,注意迭代法、裂项求和法、错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网