题目内容
命题“?x∈R使x2+2x+1<0”的否定是
?x∈R,使x2+2x+1≥0
?x∈R,使x2+2x+1≥0
.分析:根据命题“?x∈R使x2+2x+1<0”是特称命题,其否定为全称命题,即?x∈R,使x2+2x+1≥0.从而得到答案.
解答:解:∵命题“?x∈R使x2+2x+1<0”是特称命题
∴否定命题为:?x∈R,使x2+2x+1≥0
故答案为:?x∈R,使x2+2x+1≥0.
∴否定命题为:?x∈R,使x2+2x+1≥0
故答案为:?x∈R,使x2+2x+1≥0.
点评:本题主要考查全称命题与特称命题的转化,属基础题.
练习册系列答案
相关题目