题目内容

已知抛物线y=x2-1上一定点B(-1,0)和两个动点P、Q,当P在抛物线上运动时,BP⊥PQ,则Q点的横坐标的取值范围是
(-∞,-3]∪[1,+∞)
(-∞,-3]∪[1,+∞)
分析:先假设P,Q的坐标,利用BP⊥PQ,可得斜率之积为-1,从而可得方程,再利用方程根的判别式大于等于0,即可求得Q点的横坐标的取值范围
解答:解:设P(t,t2-1),Q(s,s2-1)
∵BP⊥PQ,
t2-1
t+1
(s2-1)-(t2-1)
s-t
=-1

即t2+(s-1)t-s+1=0
∵t∈R,P,Q是抛物线上两个不同的点
∴必须有△=(s-1)2+4(s-1)≥0.
即s2+2s-3≥0,
解得s≤-3或s≥1.
∴Q点的横坐标的取值范围是 (-∞,-3]∪[1,+∞)
故答案为:(-∞,-3]∪[1,+∞)
点评:本题重点考考查取值范围问题,解题的关键是利用斜率之积为-1构建方程,再利用方程根的判别式大于等于0进行求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网