题目内容
已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-bn.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)设cn=
,求证数列{cn}的前n和Rn<4;
(III)设cn=an+(-1)nlog2bn,求数列{cn}的前2n和R2n.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)设cn=
| anbn |
| 4 |
(III)设cn=an+(-1)nlog2bn,求数列{cn}的前2n和R2n.
(I)∵数列{an}的前n项和Sn=2n2+2n,
∴a1=S1=2+2=4,
an=Sn-Sn-1=(2n2+2n)-[2(n-1)2+2(n-1)]=4n,
当n=1时,4n=4=a1,
∴an=4n.
∵数列{bn}的前n项和Tn=2-bn,
∴当n=1时,T1=b1=2-b1,解得b1=1.
当n>1时,Tn=2-bn,Tn-1=2-bn-1,
∴Tn-Tn-1=bn=bn-1-bn,∴2bn=bn-1,
∴
=
,
∴数列{bn}是以首项为1,公比为
的等比数列,
∴bn=(
)n-1,n∈N*.
(II)∵cn=
=n•(
)n-1,
∴数列{cn}的前n和:
Rn=c1+c2+c3+…+cn
=1•(
)0+2×(
)1+3×(
)2+…+(n-1)•(
)n-2+n•(
)n-1,①
∴
Rn =1•(
)1+2×(
)2+3×(
)3+…+(n-1)•(
)n-1+n•(
)n,②
①-②,得
Rn=1+
+(
)2+(
)3+…+(
)n-1-n•(
)n
Rn=
-n•(
)n
=2-(
)n+1-n•(
)n,
∴Rn=4-2(n+2)(
)n<4;
( III)∵cn=an+(-1)nlog2bn
=4n+(-1)nlog2(
)n-1
=4n+(-1)n(1-n),
∴数列{cn}的前2n和
R2n=[4×1+(-1)1(1-1)]+[4×2+(-1)2(1-2)]+[4×3+(-1)3(1-3)]+…+[4×2n+(-1)2n(1-2n)]
=4(1+2+3+…+2n)+[0-1+2-3+…+(2n-2)-(2n-1)]
=4×
-n
=8n2+3n.
∴R2n=8n2+3n.
∴a1=S1=2+2=4,
an=Sn-Sn-1=(2n2+2n)-[2(n-1)2+2(n-1)]=4n,
当n=1时,4n=4=a1,
∴an=4n.
∵数列{bn}的前n项和Tn=2-bn,
∴当n=1时,T1=b1=2-b1,解得b1=1.
当n>1时,Tn=2-bn,Tn-1=2-bn-1,
∴Tn-Tn-1=bn=bn-1-bn,∴2bn=bn-1,
∴
| bn |
| bn-1 |
| 1 |
| 2 |
∴数列{bn}是以首项为1,公比为
| 1 |
| 2 |
∴bn=(
| 1 |
| 2 |
(II)∵cn=
| anbn |
| 4 |
| 1 |
| 2 |
∴数列{cn}的前n和:
Rn=c1+c2+c3+…+cn
=1•(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
①-②,得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
1×[1-(
| ||
1-
|
| 1 |
| 2 |
=2-(
| 1 |
| 2 |
| 1 |
| 2 |
∴Rn=4-2(n+2)(
| 1 |
| 2 |
( III)∵cn=an+(-1)nlog2bn
=4n+(-1)nlog2(
| 1 |
| 2 |
=4n+(-1)n(1-n),
∴数列{cn}的前2n和
R2n=[4×1+(-1)1(1-1)]+[4×2+(-1)2(1-2)]+[4×3+(-1)3(1-3)]+…+[4×2n+(-1)2n(1-2n)]
=4(1+2+3+…+2n)+[0-1+2-3+…+(2n-2)-(2n-1)]
=4×
| 2n(1+2n) |
| 2 |
=8n2+3n.
∴R2n=8n2+3n.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |