题目内容

已知函数f(x)=alnx-ax-3(a∈R)
(1)求f(x)的单调区间;
(2)若函数f(x)的图象在点(2,f)处切线的倾斜角为45°,且对于任意的t∈[1,2],函数数学公式在区间(t,3)上总不为单调函数,求m的取值范围.

解:(1)
a>0时,f(x)在(0,1]上单调递增,在[1,+∞)单调递减;
a<0时,f(x)在(0,1]上单调递减,在[1,+∞)单调递增;
a=0时,f(x)不是单调函数.
(2)由f′(2)=1得a=-2,所以f(x)=-2lnx+2x-3,则
故g′(x)=3x2+(m+4)x-2
因为g(x)在(t,3)上总不是单调函数,且g′(0)=-2,

由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,
综上,
m的取值范围为:
分析:(1)先求导数fˊ(x)然后在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的区间为单调增区间,fˊ(x)<0的区间为单调减区间.
(2)对函数求导,求出函数的单调区间,根据函数的单调区间得到若f(x)在[1,2]上不单调,只要极值点出现在这个区间就可以,得到对于任意的t∈[1,2],g′(t)<0恒成立,从而求m的取值范围.
点评:本题考查了函数的单调性,利用导数判断函数的单调性的步骤是:(1)确定函数的定义域;(2)求导数fˊ(x);(3)在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0;(4)确定函数的单调区间.若在函数式中含字母系数,往往要分类讨论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网