题目内容
()(本小题满分13分)
设椭圆
过点
,且着焦点为![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)当过点
的动直线
与椭圆
相交与两不同点
时,在线段
上取点
,满足
,证明:点
总在某定直线上
(Ⅰ)![]()
(Ⅱ)见解析
解析:
(1)由题意:
,解得
,所求椭圆方程为 ![]()
(2)方法一
设点Q、A、B的坐标分别为
。
由题设知
均不为零,记
,则
且![]()
又A,P,B,Q四点共线,从而![]()
于是
, ![]()
, ![]()
从而
,
(1)
,
(2)
又点A、B在椭圆C上,即
![]()
(1)+(2)×2并结合(3),(4)得![]()
即点
总在定直线
上
方法二
设点
,由题设,
均不为零。
且 ![]()
又
四点共线,可设
,于是
(1)
(2)
由于
在椭圆C上,将(1),(2)分别代入C的方程
整理得
(3)
(4)
(4)-(3) 得 ![]()
![]()
即点
总在定直线
上
练习册系列答案
相关题目
(本小题满分13分)
随机变量X的分布列如下表如示,若数列
是以
为首项,以
为公比的等比数列,则称随机变量X服从等比分布,记为Q(
,
).现随机变量X∽Q(
,2).
|
X |
1 |
2 |
… |
n |
|
|
|
|
… |
|
(Ⅰ)求n 的值并求随机变量X的数学期望EX;
(Ⅱ)一个盒子里装有标号为1,2,…,n且质地相同的标签若干张,从中任取1张标签所得的标号为随机变量X.现有放回的从中每次抽取一张,共抽取三次,求恰好2次取得标签的标号不大于3的概率.