题目内容
a、b是常数,关于x的一元二次方程x2+(a+b)x+3+
=0有实数解记为事件A.
(1)若a、b分别表示投掷两枚均匀骰子出现的点数,求P(A);
(2)若a∈R、b∈R,-6≤a≤6且-6≤b≤6,求P(A).
| ab |
| 2 |
(1)若a、b分别表示投掷两枚均匀骰子出现的点数,求P(A);
(2)若a∈R、b∈R,-6≤a≤6且-6≤b≤6,求P(A).
(1)方程有实数解,(a+b)2-4(3+
)≥0,
即a2+b2≥12…(1分)
依题意,a=1、2、3、4、5、6,b=1、2、3、4、5、6,
所以,“投掷两枚均匀骰子出现的点数”共有6×6=36种结果…(2分)
当且仅当“a=1且b=1、2、3”,或“a=2且b=1、2”,
或“a=3且b=1”时,a2+b2≥12不成立…(5分),
所以满足a2+b2≥12的结果有36-(3+2+1)=30种…(6分),
从而P(A)=
=
…(7分).
(2)在平面直角坐标系aOb中,直线a=±6与b=±6围成一个正方形…(8分)
正方形边长即直线a=±6与b=±6之间的距离为d=12…(9分)
正方形的面积S=d2=144…(10分),
圆a2+b2=12的面积为S′=12π…(11分)
圆在正方形内部…(12分),
所以P(A)=
=
=
…(13分)
| ab |
| 2 |
即a2+b2≥12…(1分)
依题意,a=1、2、3、4、5、6,b=1、2、3、4、5、6,
所以,“投掷两枚均匀骰子出现的点数”共有6×6=36种结果…(2分)
当且仅当“a=1且b=1、2、3”,或“a=2且b=1、2”,
或“a=3且b=1”时,a2+b2≥12不成立…(5分),
所以满足a2+b2≥12的结果有36-(3+2+1)=30种…(6分),
从而P(A)=
| 30 |
| 36 |
| 5 |
| 6 |
(2)在平面直角坐标系aOb中,直线a=±6与b=±6围成一个正方形…(8分)
正方形边长即直线a=±6与b=±6之间的距离为d=12…(9分)
正方形的面积S=d2=144…(10分),
圆a2+b2=12的面积为S′=12π…(11分)
圆在正方形内部…(12分),
所以P(A)=
| S-S′ |
| S |
| 144-12π |
| 144 |
| 12-π |
| 12 |
练习册系列答案
相关题目