题目内容
在三棱锥A-BCD中,侧棱AC、AC、AD两两垂直,△ABC、△ACD、△ADB 的面积分别为
、
、
,则该三棱锥外接球的表面积为
- A.2π
- B.4
π - C.6π
- D.24π
C
分析:三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,求出长方体的三度,转化为对角线长,即可求三棱锥外接球的表面积.
解答:三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,
∵侧棱AC、AC、AD两两垂直,△ABC、△ACD、△ADB 的面积分别为
、
、
,
∴
AB•AC=
,
AD•AC=
,
AB•AD=
∴AB=
,AC=1,AD=
∴球的直径为:
∴半径为
∴三棱锥外接球的表面积为
=6π
故选C.
点评:本题考查三棱锥外接球的表面积,三棱锥转化为长方体,两者的外接球是同一个,以及长方体的对角线就是球的直径是解题的关键所在.
分析:三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,求出长方体的三度,转化为对角线长,即可求三棱锥外接球的表面积.
解答:三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,
∵侧棱AC、AC、AD两两垂直,△ABC、△ACD、△ADB 的面积分别为
∴
∴AB=
∴球的直径为:
∴半径为
∴三棱锥外接球的表面积为
故选C.
点评:本题考查三棱锥外接球的表面积,三棱锥转化为长方体,两者的外接球是同一个,以及长方体的对角线就是球的直径是解题的关键所在.
练习册系列答案
相关题目