题目内容

已知数列{an}的前n项和为Sn,满足an≠0,anSn+1-an+1Sn=2n-1an+1an,n∈N*
(1)求证Sn=2n-1an
(2)设bn=
an
an+1
求数列{bn}的前n项和Tn
(1)证明:∵an≠0,anSn+1-an+1Sn=2n-1an+1an,n∈N*
Sn+1
an+1
-
Sn
an
=2n-1
cn=
Sn
an
,则cn+1-cn=2n-1
利用叠加法可得:cn-c1=20+21+…+2n-2=
1-2n-1
1-2
=2n-1-1
c1=
S1
a1
=1,∴cn=2n-1
Sn=2n-1an
(2)由(1)知,Sn+1=2nan+1
两式相减可得an+1=2nan+1-2n-1an
bn=
an
an+1
=
2n-1
2n-1
=2(1-
1
2n
)

∴Tn=
n
2
-2(
1
2
+
1
22
+…+
1
2n
)
=
n-4
2
+
1
2n-1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网