题目内容
已知数列{an}的通项公式为an=n2-5n+4
(1)数列中有多少项是负数?
(2)n为何值时,an有最小值?并求出最小值.
解:(1)由n2-5n+4<0,得1<n<4,
故数列中有两项为负数;
(2)an=n2-5n+4=
-
,
因此当n=2或3时,an有最小值,最小值为-2.
分析:(1)令an=n2-5n+4<0,解出n的范围,由此可得负项的项数;
(2)对an进行配方,利用二次函数的性质即可求得最小值.
点评:本题考查数列的函数特性,数列是特殊的函数,其定义域为正整数集或其有限子集,所以数列的很多问题可以从函数角度进行分析解决.
故数列中有两项为负数;
(2)an=n2-5n+4=
因此当n=2或3时,an有最小值,最小值为-2.
分析:(1)令an=n2-5n+4<0,解出n的范围,由此可得负项的项数;
(2)对an进行配方,利用二次函数的性质即可求得最小值.
点评:本题考查数列的函数特性,数列是特殊的函数,其定义域为正整数集或其有限子集,所以数列的很多问题可以从函数角度进行分析解决.
练习册系列答案
相关题目
已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
,则数列{bn}的前n项和的取值范围为( )
| 1 |
| Sn+n |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、[
|