题目内容
已知等比数列{an}中,a1=| 1 |
| 3 |
| 1 |
| 3 |
(Ⅰ)Sn为{an}的前n项和,证明:Sn=
| 1-an |
| 2 |
(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{bn}的通项公式.
分析:(I)根据数列{an}是等比数列,a1=
,公比q=
,求出通项公式an和前n项和Sn,然后经过运算即可证明.
(II)根据数列{an}的通项公式和对数函数运算性质求出数列{bn}的通项公式.
| 1 |
| 3 |
| 1 |
| 3 |
(II)根据数列{an}的通项公式和对数函数运算性质求出数列{bn}的通项公式.
解答:证明:(I)∵数列{an}为等比数列,a1=
,q=
∴an=
×(
)n-1=
,
Sn=
=
又∵
=
=Sn
∴Sn=
(II)∵an=
∴bn=log3a1+log3a2+…+log3an=-log33+(-2log33)+…-nlog33
=-(1+2+…+n)
=-
∴数列{bn}的通项公式为:bn=-
| 1 |
| 3 |
| 1 |
| 3 |
∴an=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3n |
Sn=
| ||||
1-
|
1-
| ||
| 2 |
又∵
| 1-an |
| 2 |
1-
| ||
| 2 |
∴Sn=
| 1-an |
| 2 |
(II)∵an=
| 1 |
| 3n |
∴bn=log3a1+log3a2+…+log3an=-log33+(-2log33)+…-nlog33
=-(1+2+…+n)
=-
| n(n+1) |
| 2 |
∴数列{bn}的通项公式为:bn=-
| n(n+1) |
| 2 |
点评:本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.
练习册系列答案
相关题目