题目内容

已知椭圆C的中心在坐标原点,焦点在x轴上,长轴长为,离心率为,经过其左焦点F1的直线l交椭圆C于P、Q两点.
(I)求椭圆C的方程;
(II)在x轴上是否存在一点M,使得恒为常数?若存在,求出M点的坐标和这个常数;若不存在,说明理由.
【答案】分析:(I)根据题意设出椭圆的方程,根据长轴2a的长和离心率e=,列出方程组求出a与c的值,然后根据椭圆的性质求出b的值,把a与b的值代入设出的椭圆方程即可确定出椭圆C的方程;
(II)根据(I)求出的c的值写出椭圆左焦点F1的坐标,假设在x轴上存在一点M(t,0),使得恒为常数,分两种情况考虑:①当直线l与x轴不垂直时,设出过左焦点F1的直线方程,以及P和Q两点的坐标,把所设的直线方程与椭圆方程联立,消去y得到关于x的方程,利用韦达定理求出两根之和与两根之积,然后表示出,把其中的纵坐标代换为横坐标,化简后将求出的两根之和与两根之积代入得到一个关系式,由此关系式与k的取值无关,得到关于t的式子为0,即可求出此时t的值,从而此时这个常数;②当直线l与x轴垂直时,求出P与Q两点的坐标,且求出t及的值,与①中求出的常数相等,综上,在x轴上存在一点M,使得恒为常数.
解答:解:(I)设椭圆C的方程为
由题意,得,解得,所以b2=2.(3分)
所求的椭圆方程为.(4分)
(II)由(I)知F1(-1,0).
假设在x轴上存在一点M(t,0),使得恒为常数.
①当直线l与x轴不垂直时,设其方程为y=k(x+1),P(x1,y1)、Q(x2,y2).
得(2+3k2)x2+6k2x+(3k2-6)=0.(6分)
所以.(7分)
=(x1-t)(x2-t)+y1y2
=(x1-t)(x2-t)+k2(x1+1)(x2+1)
=(k2+1)x1x2+(k2-t)(x1+x2)+k2+t2
=
=
因为是与k无关的常数,从而有,即.(10分)
此时.(11分)
②当直线l与x轴垂直时,此时点P、Q的坐标分别为
时,亦有.(13分)
综上,在x轴上存在定点,使得恒为常数,且这个常数为.(14分)
点评:本题考查椭圆的应用,及平面向量的运算法则,考查了分类讨论的数学思想.关键是看清题中给出的条件,灵活运用韦达定理,中点坐标公式进行求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网