题目内容
已知:x-2tan
+xtan2
=0,y-1+tan2
+ytan2
=0.求证:cos2a=x2+y2-2sin2a.
| a |
| 2 |
| a |
| 2 |
| a |
| 2 |
| a |
| 2 |
证明:∵x-2tan
+xtan2
=0∴x=
=sinα;
∵y-1+tan2
+ytan2
=0∴y=
=cosα.
则cos2α=1-2sin2α=sin2α+cos2α-2sin2α=x2+y2-2sin2a得证
| a |
| 2 |
| a |
| 2 |
2tan
| ||
1+tan2
|
∵y-1+tan2
| a |
| 2 |
| a |
| 2 |
1-tan2
| ||
1+tan2
|
则cos2α=1-2sin2α=sin2α+cos2α-2sin2α=x2+y2-2sin2a得证
练习册系列答案
相关题目