题目内容
(本小题满分12分)
如图,
是底部
不可到达的一个塔型建筑物,
为塔的最高点.现需在对岸测出塔高
,甲、乙两同学各提出了一种测量方法,甲同学的方法是:选与塔底
在同一水平面内的一条基线
,使
三点不在同一条直线上,测出
及
的大小(分别用
表示测得的数据)以及
间的距离(用
表示测得的数据),另外需在点
测得塔顶
的仰角(用
表示测量的数据),就可以求得塔高
.乙同学的方法是:选一条水平基线
,使
三点在同一条直线上.在
处分别测得塔顶
的仰角(分别用
表示测得的数据)以及
间的距离(用
表示测得的数据),就可以求得塔高
.
![]()
请从甲或乙的想法中选出一种测量方法,写出你的选择并按如下要求完成测量计算:①画出测量示意图;②用所叙述的相应字母表示测量数据,画图时
按顺时针方向标注,
按从左到右的方向标注;③求塔高
.
【答案】
①②见解析 ③![]()
【解析】本小题属于解三角形问题,解三角形要具备三个条件,并且其中有一个条件为边.然后再根据给的三个条件确定是选用正弦定理还是余弦定理.
一般如果知道两角及一边或两边及一边的对角考虑采用正弦定理.如果知道三边或两边及夹角考虑余弦定理.
解:选甲:示意图1
![]()
图1 ----------4分
在
中,
.由正弦定理得
.
所以
.
在
中,
.---------12分
选乙:图2
图2----------4分
在
中,
,由正弦定理得
,
所以
.
在
中,
.---------12分
练习册系列答案
相关题目