题目内容
棱长为1的正方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,若棱AA1,DD1的中点分别为E,F,则直线EF被球O截得的弦长为 .
解析
如图是从上下底面处在水平状态下的棱长为的正方体中分离出来的.有如下结论:①在图中的度数和它表示的角的真实度数都是;②;③与所成的角是;④若,则用图示中这样一个装置盛水,最多能盛的水.其中正确的结论是 (请填上你所有认为正确结论的序号).
如图,正方体ABCDA1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是 (写出所有正确命题的编号). ①当0<CQ<时,S为四边形;②当CQ=时,S为等腰梯形;③当CQ=时,S与C1D1的交点R满足C1R=;④当<CQ<1时,S为六边形;⑤当CQ=1时,S的面积为.
若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则 (写出所有正确结论的编号).①四面体ABCD每组对棱相互垂直;②四面体ABCD每个面的面积相等;③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°;④连接四面体ABCD每组对棱中点的线段相互垂直平分;⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.
下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是___________
某几何体的三视图如图所示,其中正视图为正三角形,则该几何体的体积为 .
如图所示,在长方体ABCDA1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥ABB1D1D的体积为 cm3.
我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)
已知三棱锥P-ABC的各顶点均在一个半径为R的球面上,球心O在AB上,PO⊥平面ABC,,则三棱锥与球的体积之比为________.