题目内容
已知数列{an}满足:a1=1,an+1=| 1 |
| 2 |
| n |
| 2n+1 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:
| 1 |
| 2n-1 |
(Ⅲ)设Tn=
| 2n |
| n2-n+4 |
| 1 |
| 2 |
| 2 |
| Tn+2 |
| Tn |
| Kn |
分析:(Ⅰ)2n+1an+1-2nan=n,令bn=2n+1an+1-2nan,得2nan=2a1+b1+b2+…+bn-1=2+
(n≥2,n∈N*),由此能求出数列{an}的通项公式.
(Ⅱ)由
≥0,可得an≥
,2n+1=(1+1)n+1=1+Cn+11+Cn+12+…+Cn+1n-1+Cn+1n+1,所以2n+1>n2+2n+2,由此能证明
≤an≤1.
(Ⅲ)Tn=
•(n2-n+4)•(
)n+1=
,欲证:
<
.,即证Kn<
Tn2+Tn,即ln(1+Tn)-Tn<0.构造函数f(x)=ln(1+x)-x,借助导数能够证明
<
.
| n(n-1) |
| 2 |
(Ⅱ)由
| n(n-1) |
| 2n+1 |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
(Ⅲ)Tn=
| 2n |
| n2-n+4 |
| 1 |
| 2 |
| n |
| 2n |
| 2 |
| Tn+2 |
| Tn |
| Kn |
| 1 |
| 2 |
| 2 |
| Tn+2 |
| Tn |
| Kn |
解答:解:(Ⅰ)∵2n+1an+1-2nan=n
令bn=2n+1an+1-2nan,∴2nan=2a1+b1+b2+…+bn-1=2+
(n≥2,n∈N*),
∴an=
+
,又a1=1成立∴an=
+
(4分)
(Ⅱ)∵
≥0,∴an≥
又当n≥2时,2n+1=(1+1)n+1=1+Cn+11+Cn+12+…+Cn+1n-1+Cn+1n+1
∴2n+1>1+Cn+11+2Cn+12,∴2n+1>n2+2n+2,而an=(n2-n+4)
∴an<
=1-
<1,又a1=1
故
≤an≤1(9分)
(Ⅲ)Tn=
•(n2-n+4)•(
)n+1=
欲证:
<
.,即证Kn<
Tn2+Tn,即ln(1+Tn)-Tn<0.
构造函数f(x)=ln(1+x)-x(x≥0),f′(x)=-
<0,
∴f(x)在[0,+∞)上为减函数,f(x)的最大值为f(0)=0,
∴当x>0时,f(x)<0,∴ln(1+Tn)-Tn<0
故不等式
<
.成立.(14分)
令bn=2n+1an+1-2nan,∴2nan=2a1+b1+b2+…+bn-1=2+
| n(n-1) |
| 2 |
∴an=
| 1 |
| 2n-1 |
| n(n-1) |
| 2n+1 |
| 1 |
| 2n-1 |
| n(n-1) |
| 2n+1 |
(Ⅱ)∵
| n(n-1) |
| 2n+1 |
| 1 |
| 2n-1 |
又当n≥2时,2n+1=(1+1)n+1=1+Cn+11+Cn+12+…+Cn+1n-1+Cn+1n+1
∴2n+1>1+Cn+11+2Cn+12,∴2n+1>n2+2n+2,而an=(n2-n+4)
| 1 |
| 2n+1 |
∴an<
| n2-n+4 |
| n2+2n+2 |
| 3n-2 |
| n2+2n+2 |
故
| 1 |
| 2n-1 |
(Ⅲ)Tn=
| 2n |
| n2-n+4 |
| 1 |
| 2 |
| n |
| 2n |
欲证:
| 2 |
| Tn+2 |
| Tn |
| Kn |
| 1 |
| 2 |
构造函数f(x)=ln(1+x)-x(x≥0),f′(x)=-
| x |
| 1+x |
∴f(x)在[0,+∞)上为减函数,f(x)的最大值为f(0)=0,
∴当x>0时,f(x)<0,∴ln(1+Tn)-Tn<0
故不等式
| 2 |
| Tn+2 |
| Tn |
| Kn |
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意构造法的合理运用.
练习册系列答案
相关题目