题目内容
(1)求PB和平面PAD所成的角的大小;
(2)证明AE⊥平面PCD.
分析:(1)先找出PB和平面PAD所成的角,再进行求解即可;
(2)可以利用线面垂直根据二面角的定义作角,再证明线面垂直.
(2)可以利用线面垂直根据二面角的定义作角,再证明线面垂直.
解答:
(1)解:在四棱锥P-ABCD中,
因PA⊥底面ABCD,AB?平面ABCD,
故PA⊥AB.
又AB⊥AD,PA∩AD=A,
从而AB⊥平面PAD,
故PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.
在Rt△PAB中,AB=PA,故∠APB=45°.
所以PB和平面PAD所成的角的大小为45°.
(2)证明:在四棱锥P-ABCD中,
因为PA⊥底面ABCD,CD?平面ABCD,
所以CD⊥PA.
因为CD⊥AC,PA∩AC=A,
所以CD⊥平面PAC.
又AE?平面PAC,所以AE⊥CD.
由PA=AB=BC,∠ABC=60°,可得AC=PA.
因为E是PC的中点,所以AE⊥PC.
又PC∩CD=C,
所以AE⊥平面PCD.
因PA⊥底面ABCD,AB?平面ABCD,
故PA⊥AB.
又AB⊥AD,PA∩AD=A,
从而AB⊥平面PAD,
故PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.
在Rt△PAB中,AB=PA,故∠APB=45°.
所以PB和平面PAD所成的角的大小为45°.
(2)证明:在四棱锥P-ABCD中,
因为PA⊥底面ABCD,CD?平面ABCD,
所以CD⊥PA.
因为CD⊥AC,PA∩AC=A,
所以CD⊥平面PAC.
又AE?平面PAC,所以AE⊥CD.
由PA=AB=BC,∠ABC=60°,可得AC=PA.
因为E是PC的中点,所以AE⊥PC.
又PC∩CD=C,
所以AE⊥平面PCD.
点评:本题考查线面角,考查线面垂直,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目