题目内容
已知椭圆
的离心率为
,直线
:
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(I)求椭圆
的方程;
(II)设椭圆
的左焦点为
,右焦点
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
垂直平分线交
于点
,求点
的轨迹
的方程;
(III)设
与
轴交于点
,不同的两点
在
上,且满足
求
的取值范围.
(I)求椭圆
(II)设椭圆
(III)设
(Ⅰ)∵
∵直线
相切,
∴
∴
…………3分
∵椭圆C1的方程是
………………6分
(Ⅱ)∵MP=MF2,
∴动点M到定直线
的距离等于它到定点F1(1,0)的距离,
∴动点M的轨迹是C为l1准线,F2为焦点的抛物线 ………………6分
∴点M的轨迹C2的方程为
…………9分
(Ⅲ)Q(0,0),设
∴
∵
∴
∵
,化简得
∴
………………11分
∴
当且仅当
时等号成立 …………13分
∵
∴当
的取值范围是
……14分
∵直线
∴
∵椭圆C1的方程是
(Ⅱ)∵MP=MF2,
∴动点M到定直线
∴动点M的轨迹是C为l1准线,F2为焦点的抛物线 ………………6分
∴点M的轨迹C2的方程为
(Ⅲ)Q(0,0),设
∴
∵
∴
∵
∴
∴
当且仅当
∵
∴当
同答案
练习册系列答案
相关题目