题目内容

甲口袋中有大小相同的白球3个,红球5个,乙口袋中有大小相同的白球4个,黑球8个,从两个口袋中各摸出2个球,求:
(1).甲口袋中摸出的2个球都是红球的概率,
(2).两个口袋中摸出的4个球中恰有2个白球的概率.
分析:(1)从甲口袋中摸出的2个球,利用组合算出所有的事件,共有C82个,都是红球的有:C52,利用概率公式计算即可;
(2)本题是一个古典概型,试验发生包含的事件它包括:事件A:甲口袋摸出2个白球乙口袋摸出2个黑球,事件B:甲、乙两个口袋各摸出1个白球,事件C:甲口袋摸出2个红球乙口袋摸出2个白球,且A、B、C彼此互斥,根据彼此互斥概率公式得到结果.
解答:解:(1)甲口袋中摸出的2个都是红球的概率为P1=
C
2
5
C
2
8
=
5
14

(2)记“两个口袋中摸出的4个球中恰有2个白球”为事件D,它包括:
事件A:甲口袋摸出2个白球乙口袋摸出2个黑球,则P(A)=
C
2
3
C
2
8
C
2
8
C
2
12
=
1
22

事件B:甲、乙两个口袋各摸出1个白球,则P(B)=
C
1
3
C
1
5
C
2
8
C
1
4
C
1
8
C
2
12
=
20
77

事件C:甲口袋摸出2个红球乙口袋摸出2个白球,则P(C)=
C
2
5
C
2
8
C
2
4
C
2
12
=
5
154

且A、B、C彼此互斥,所以P(D)=P(A)+P(B)+P(C)=
1
22
+
20
77
+
5
154
=
26
77
点评:本题考查古典概型、互斥事件的概率加法公式,考查用排列组合数写出试验包含的所有事件,是一个古典概型的典型问题,这种题目可以作为文科的高考题目的解答题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网