题目内容

已知等比数列{an}各项均为正数,且2a1+3a2=8,a32=
1
4
a2a6

(1)求数列{an}的前n项和Sn
(2)若数列{bn}满足bn=
1
log2(Sn+1).log2(Sn+1+1)
(n∈N*)
,求数列{bn}的前n项和Tn
(1)∵正项等比数列{an}中,a32=
1
4
a2•a6=
1
4
a42
∴q2=
a42
a32
=4,q>0,
∴q=2;
又2a1+3a2=8,即2a1+3a1q=8,
∴a1=1.
∴Sn=
1×(1-2n)
1-2
=2n-1.
(2)∵bn=
1
log2(Sn+1).log2(Sn+1+1)

=
1
log2(2n-1+1).log2(2n+1-1+1)

=
1
log22nlog22n+1

=
1
n(n+1)

=
1
n
-
1
n+1

∴Tn=b1+b2+…+bn
=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1

=1-
1
n+1

=
n
n+1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网