题目内容
数列{an}的前n项和为Sn,且Sn=
(an-1)
(1)求 a1,a2及a3;
(2)求an.
| 1 | 3 |
(1)求 a1,a2及a3;
(2)求an.
分析:(1)当n=1时,Sn=
(an-1),求出a1.通过n=2,3分别求出a2及a3;
(2)利用Sn=
(an-1),当n≥2时,Sn-1=
(an-1 -1) (n≥2),由此能够得到数列{an}的通项公式.
| 1 |
| 3 |
(2)利用Sn=
| 1 |
| 3 |
| 1 |
| 3 |
解答:解:(1)当n=1时,Sn=
(an-1),∴a1=-
.
n=2时a1+a2=
(a2-1),a2=
;
n=3时a1+a2+a3=
(a3-1),解得a3=-
.
(2)因为Sn=
(an-1),…①
所以n≥2时,Sn-1=
(an-1-1) (n≥2)…②
①-②得:an=
(an -1)-
(an-1-1) (n≥2),解得2an=-an-1,
∴数列{an}是首项为-
,公比为-
的等比数列.
∴an=-
×(-
)n-1=(-
)n.
| 1 |
| 3 |
| 1 |
| 2 |
n=2时a1+a2=
| 1 |
| 3 |
| 1 |
| 4 |
n=3时a1+a2+a3=
| 1 |
| 3 |
| 1 |
| 8 |
(2)因为Sn=
| 1 |
| 3 |
所以n≥2时,Sn-1=
| 1 |
| 3 |
①-②得:an=
| 1 |
| 3 |
| 1 |
| 3 |
∴数列{an}是首项为-
| 1 |
| 2 |
| 1 |
| 2 |
∴an=-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
点评:第(1)题考查迭代法求数列项的求法,(2)数列通项公式的求法方程,注意n的范围,考查计算能力.
练习册系列答案
相关题目