题目内容

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心I,且有
IG
F1F2
(其中λ为实数),椭圆C的离心率e=(  )
分析:在焦点△F1PF2中,设P(x0,y0),由三角形重心坐标公式,可得重心G的纵坐标,因为
IG
F1F2
,故内心I的纵坐标与G相同,最后利用三角形F1PF2的面积等于被内心分割的三个小三角形的面积之和建立a、b、c的等式,即可解得离心率
解答:解:设P(x0,y0),∵G为△F1PF2的重心,
∴G点坐标为 G(
x0
3
y0
3
),
IG
F1F2
,∴IG∥x轴,
∴I的纵坐标为
y0
3

在焦点△F1PF2中,|PF1|+|PF2|=2a,|F1F2|=2c
SF1PF2=
1
2
•|F1F2|•|y0|
又∵I为△F1PF2的内心,∴I的纵坐标
y0
3
即为内切圆半径,
内心I把△F1PF2分为三个底分别为△F1PF2的三边,高为内切圆半径的小三角形
SF1PF2=
1
2
(|PF1|+|F1F2|+|PF2|)|
y0
3
|
1
2
•|F1F2|•|y0|=
1
2
(|PF1|+|F1F2|+|PF2|)|
y0
3
|
1
2
×2c•|y0|=
1
2
(2a+2c)|
y0
3
|,
∴2c=a,
∴椭圆C的离心率e=
c
a
=
1
2

故选A
点评:本题考查了椭圆的标准方程和几何意义,重心坐标公式,三角形内心的意义及其应用,椭圆离心率的求法
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网