题目内容

在△ABC中,a,b,c分别为内角A.B.C的对边,且sin2A+sin2B-sin2C=sinA•sinB.
(Ⅰ)求角C的大小;
(Ⅱ)若c=2,求△ABC面积的最大值.
分析:(1)先根据正弦定理找到角与边的关系,即用角的正弦表示出边,然后再用余弦定理可求出角C的余弦值,从而得到答案.
(2)先根据余弦定理找到边ab的范围,然后代入三角形的面积公式即可求出面积的最大值.
解答:解:(Ⅰ)解:根据正弦定理设ka=sinA,kb=sinB,kc=sinC,
∵sin2A+sin2B-sin2C=sinA•sinB.
∴k2a2+k2b2-k2c2=ka•kb,即:a2+b2-c2=a•b
∴由余弦定理cosC=
a2+b2-c2
2ab
=
1
2

∴C=
π
3

(Ⅱ)由余弦定理可知c2=a2+b2-2a•bcosC
∴4=a2+b2-a•b≥2ab-ab=ab(当且仅当a=b=2时等号成立)
即ab≤4
∴S△ABC=
1
2
absinC≤
1
2
×4×
3
2
=
3

∴△ABC面积的最大值为
3
点评:本题主要考查正弦定理和余弦定理的应用.属基础题.正弦定理与余弦定理在解三角形时有很大的用途,要给予重视.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网