题目内容
17.设f(x)=$\left\{\begin{array}{l}{x{e}^{-{x}^{2}},x≥0}\\{\frac{1}{1+cosx},-1<x<0}\end{array}\right.$,求${∫}_{1}^{4}$f(x-2)dx.分析 对于分段求定积分函数可采取分段积分的办法,而且${∫}_{1}^{4}$f(x-2)dx=${∫}_{-1}^{2}f(x)dx$
解答 解:当x∈[1,4]时,x-2∈[-1,2],所以,
${∫}_{1}^{4}$f(x-2)dx=${∫}_{-1}^{2}f(x)dx$=${∫}_{-1}^{0}$$\frac{1}{1+cosx}$dx+${∫}_{0}^{2}$$x{e}^{-x^2}$dx,其中,
${∫}_{-1}^{0}$$\frac{1}{1+cosx}$dx=${∫}_{-1}^{0}$$\frac{1}{2cos^2(\frac{x}{2})}$dx=${∫}_{-1}^{0}$$\frac{1}{cos^2(\frac{x}{2})}d(\frac{x}{2})$=tan$\frac{x}{2}$${|}_{-1}^{0}$=tan$\frac{1}{2}$,
${∫}_{0}^{2}$$x{e}^{-x^2}$dx=(-$\frac{1}{2}$${e}^{-x^2}$)${|}_{0}^{2}$=$\frac{1}{2}$(1-$\frac{1}{e^4}$),
所以,${∫}_{1}^{4}$f(x-2)dx=tan$\frac{1}{2}$+$\frac{1}{2}$(1-$\frac{1}{e^4}$).
点评 本题主要考查了定积分的运算,并采取了分段函数的定积分可分段积分的方法运算,属于中档题.
练习册系列答案
相关题目
7.函数y=x2-2x的定义域为{0,1,2,3},那么其值域为( )
| A. | {y|-1≤y≤3} | B. | {y|0≤y≤3} | C. | {0,1,2,3} | D. | {-1,0,3} |