题目内容
已知函数f(x)=2
sin2x-sin(2x-
)
(Ⅰ) 求函数f(x)的最小正周期及单调增区间;
(Ⅱ) 设α∈(0,π),f(
)=
+
,求sinα的值;
(Ⅲ)若x∈[-
,0],函数f(x)的最大值.
| 3 |
| π |
| 3 |
(Ⅰ) 求函数f(x)的最小正周期及单调增区间;
(Ⅱ) 设α∈(0,π),f(
| α |
| 2 |
| 1 |
| 2 |
| 3 |
(Ⅲ)若x∈[-
| π |
| 2 |
(Ⅰ)∵f(x)=
-
sin2x-
cos2x.=
-sin(2x+
)
∴函数f(x)的最小正周期为T=
=π
单调增区间满足:
+2kπ≤2x+
≤π+2kπk∈Z
即单调增区间为:[kπ+
,kπ+
]k∈Z
(Ⅱ)∵f(x)=
-sin(2x+
)
∴f(
)=
+
可化为:
-sin(α+
)=
+
∴sin(α+
)=-
∵α∈(0,π)∴α+
∈(
,
)α+
=
∴α=
∴sinα=sin
=
(Ⅲ)∵x∈[-
,0]∴2x+
∈[-
,
]
∴sin(2x+
)∈[-1,
]-sin(2x+
)∈[-
,1]
f(x)的最大值为
+1
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| 3 |
| π |
| 3 |
∴函数f(x)的最小正周期为T=
| 2π |
| 2 |
单调增区间满足:
| π |
| 2 |
| π |
| 3 |
即单调增区间为:[kπ+
| π |
| 12 |
| π |
| 3 |
(Ⅱ)∵f(x)=
| 3 |
| π |
| 3 |
∴f(
| α |
| 2 |
| 1 |
| 2 |
| 3 |
可化为:
| 3 |
| π |
| 3 |
| 1 |
| 2 |
| 3 |
∴sin(α+
| π |
| 3 |
| 1 |
| 2 |
∵α∈(0,π)∴α+
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
| π |
| 3 |
| 7π |
| 6 |
∴α=
| 5π |
| 6 |
| 5π |
| 6 |
| 1 |
| 2 |
(Ⅲ)∵x∈[-
| π |
| 2 |
| π |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
∴sin(2x+
| π |
| 3 |
| ||
| 2 |
| π |
| 3 |
| ||
| 2 |
f(x)的最大值为
| 3 |
练习册系列答案
相关题目