题目内容

已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则


  1. A.
    f(33)<f(50)<f(-25)
  2. B.
    f(50)<f(33)<f(-25)
  3. C.
    f(-25)<f(33)<f(50)
  4. D.
    f(-25)<f(50)<f(33)
C
分析:根据题设中的条件f(x-4)=-f(x),可得出函数的周期是8,利用函数的周期性与奇函数的性质将f(50),f(33),f(-25)用[-2,2]上的函数值表示出来,再利用单调性比较它们的大小.
解答:∵f(x-4)=-f(x)=f(x+4),∴函数的周期是8
又奇函数f(x),且在区间[0,2]上是增函数
∴函数在[-2,2]上是增函数
∵f(50)=f(2),f(33)=f(1),f(-25)=f(-1)
∴f(2)>f(1)>f(-1)
∴f(-25)<f(33)<f(50)
故选C
点评:本题考查函数的周期性,及函数的奇偶性与单调性,解题的关键是研究清楚函数的性质,利用函数的性质将三数的大小比较问题转化到区间[-2,2]上比较.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网