题目内容

13.已知a>0,且二项式${(a\sqrt{x}-\frac{1}{{\sqrt{x}}})^6}$展开式中含$\frac{1}{x}$项的系数是135,则a=3.

分析 由条件利用二项展开式的通项公式,求得展开式中含$\frac{1}{x}$项的系数,再根据展开式中含$\frac{1}{x}$项的系数为135,从而求得a的值.

解答 解:二项式${(a\sqrt{x}-\frac{1}{{\sqrt{x}}})^6}$展开式的通项公式为 Tr+1=${C}_{6}^{r}$•(-1)r•a6-r•x3-r
令3-r=-1,求得r=4,故开式中含$\frac{1}{x}$项的系数是${C}_{6}^{4}$•a2=135,求得a=3,
故答案为:3.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网