题目内容
9.化简:tanα+$\sqrt{\frac{1}{co{s}^{2}α}-1}$+2sin2α+2cos2α,其中α是第四象限角.分析 利用同角三角函数的基本关系、二倍角公式,以及三角函数在各个象限中的符号,化简所给的式子,可得结果.
解答 解:∵α是第四象限角,∴tanα+$\sqrt{\frac{1}{co{s}^{2}α}-1}$+2sin2α+2cos2α
=tanα+|$\frac{sinα}{cosα}$|+2•$\frac{1-cos2α}{2}$+cos2α+1
=tanα-tanα+2=2.
点评 本题主要考查同角三角函数的基本关系、二倍角公式,以及三角函数在各个象限中的符号,属于基础题.
练习册系列答案
相关题目
14.已知圆的方程为x2+y2=1,则圆心到直线x+y+2=0的距离为( )
| A. | 1 | B. | 2 | C. | 2$\sqrt{2}$ | D. | $\sqrt{2}$ |
18.
把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥A-BCD的正视图与俯视图如图所示,则其侧视图的面积为( )
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{1}{4}$ |