题目内容
在等差数列{an}中,4(a3+a4+a5)+3(a6+a8+a14+a16)=36,那么该数列的前14项和为( )
| A.20 | B.21 | C.42 | D.84 |
∵数列{an}为等差数列,
∴a3+a5=2a4,a8+a14=a6+a16=2a11,
又4(a3+a4+a5)+3(a6+a8+a14+a16)=36,
∴12a4+12a11=36,即a4+a11=3,
∵a1+a14=a4+a11=3,
则该数列的前14项和S14=
=21.
故选B
∴a3+a5=2a4,a8+a14=a6+a16=2a11,
又4(a3+a4+a5)+3(a6+a8+a14+a16)=36,
∴12a4+12a11=36,即a4+a11=3,
∵a1+a14=a4+a11=3,
则该数列的前14项和S14=
| 14(a1+a14) |
| 2 |
故选B
练习册系列答案
相关题目