题目内容
函数y=loga(x+2)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则
的最小值为________.
分析:由于函数y=loga(x+2)-1(a>0,a≠1)的图象恒过定点A(-1,-1),再由点A在直线mx+ny+1=0上,可得m+n=1,根据
它的最小值.
解答:由于函数y=logax经过定点(1,0),故函数y=loga(x+2)-1(a>0,a≠1)的图象恒过定点A(-1,-1),
再由点A在直线mx+ny+1=0上,可得-m-n+1=0,m+n=1.
∴
故
故答案为
点评:本题主要考查对数函数的单调性和特殊点,基本不等式的应用,属于基础题.
练习册系列答案
相关题目