题目内容
【题目】圆
:
(
)过点
,离心率为
,其左、右焦点分别为
,
,且过焦点
的直线
交椭圆于
,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若点
的坐标为
,设直线
与直线
的斜率分别为
,试证明:
.
【答案】(Ⅰ)
(Ⅱ)证明见解析
【解析】
(Ⅰ)由椭圆
过点
以及离心率为
,结合
,列方程组求解,即可得椭圆方程;
(Ⅱ)方法一:先考虑直线
斜率不存在的情况,再考虑斜率存在的情况,对于斜率存在的情况,设直线
:
,
与椭圆交点
,
,联立直线
与椭圆
的方程,消去
并整理,利用判别式及韦达定理,从而可表示出
,然后化简求解即可;
方法二:先考虑直线
斜率为0的情况,再考虑直线
斜率不为0时,对于斜率不为0的情况,设直线
,后续过程同方法一.
(Ⅰ)
椭圆
:
(
)过点
,
![]()
.①
又
椭圆
离心率为
,
![]()
,
![]()
.②
联立①②得
,解得
,
椭圆
的方程为
.
(Ⅱ)方法一:
当直线
斜率不存在时,
则
,
![]()
;
当直线
斜率存在时,
设直线
:
,
与椭圆交点
,
.
联立
,
消去
并整理得
.
由于
,
![]()
,
,
![]()
![]()
,
![]()
,
![]()
.
综上所述,
.
方法二:
当直线
斜率为0时,
![]()
,则
;
当直线
斜率不为0时,
设直线
:
设
与椭圆交点
,
,
联立
,
消去
并整理得
.
由于
,
![]()
,
,
![]()
![]()
.
![]()
,
综上所述,
.
【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:
![]()
等级 | 不合格 | 合格 | ||
得分 |
|
|
|
|
频数 | 6 |
| 24 |
|
(1)由该题中频率分布直方图求测试成绩的平均数和中位数;
(2)其他条件不变,在评定等级为“合格”的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;
(3)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为
,求
的数学期望
.