题目内容

正方体ABCD-A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证:
(1)D1O∥平面A1BC1
(2)D1O⊥平面MAC.
分析:(1)连接BD,B1D1分别交AC,A1C1于O,证明BO 
.
.
 D1O1
,BO1∥D1O,推出D1O∥平面A1BC1
(2)连接MO,设正方体ABCD-A1B1C1D1的棱长为a,证明AC⊥平面BB1D1D,然后证明D1O⊥平面MAC.
解答:证明:(1)连接BD,B1D1分别交AC,A1C1于O,O1
在正方体ABCD-A1B1C1D1中,对角面BB1D1D为矩形
∵O,O1分别是BD,B1D1的中点∴BO 
.
.
 D1O1
∴四边形BO1D1O为平行四边形∴BO1∥D1O
∵D1O?平面A1BC1,BO1?平面A1BC1∴D1O∥平面A1BC1
(2)连接MO,设正方体ABCD-A1B1C1D1的棱长为a,
在正方体ABCD-A1B1C1D1中,对角面BB1D1D为矩形且BB1=a,BD=
2
a

∵O,M分别是BD,BB1的中点∴BM=
a
2
 ,  BO=OD=
2
2
a

BM
OD
=
BO
DD1
=
2
2

由于Rt△MBO∽Rt△ODD1∴∠BOM=∠DD1O
∵在Rt△ODD1中,∠DD1O+∠D1OD=90°
∴∠BOM+∠D1OD=90°,即D1O⊥MO在正方体ABCD-A1B1C1D1
∵DD1⊥平面ABCD
∴DD1⊥AC又∵AC⊥BD,DD1∩BD=D∴AC⊥平面BB1D1D
∵D1O?平面BB1D1D∴AC⊥D1O又AC∩MO=O
∴D1O⊥平面MAC.
点评:本题是中档题,考查直线与平面的垂直,直线与平面的平行,能够正确利用直线与平面平行的判断定理,直线与平面垂直的判断定理,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网