ÌâÄ¿ÄÚÈÝ

ÒÑÖªº¯Êýf£¨x£©¶¨ÒåÔÚÇø¼ä(-1£¬1)ÉÏ£¬f(
1
2
)=-1
£¬¶ÔÈÎÒâx£¬y¡Ê£¨-1£¬1£©£¬ºãÓÐf(x)+f(y)=f(
x+y
1+xy
)
³ÉÁ¢£¬ÓÖÊýÁÐ{an}Âú×ãa1=
1
2
£¬an+1=
2a
1+
a2n
£®
£¨I£©ÔÚ£¨-1£¬1£©ÄÚÇóÒ»¸öʵÊýt£¬Ê¹µÃf(t)=2f(
1
2
)
£»
£¨II£©ÇóÖ¤£ºÊýÁÐ{f£¨an£©}ÊǵȱÈÊýÁУ¬²¢Çóf£¨an£©µÄ±í´ïʽ£»
£¨III£©Éècn=
n
2
bn+2£¬bn=
1
f(a1)
+
1
f(a2)
+
1
f(a3)
+¡­+
1
f(an)
£¬ÊÇ·ñ´æÔÚm¡ÊN*£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬cn£¼
6
7
lo
g22
m-
18
7
log2m
ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ömµÄ×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨I£©f(t)=2f(
1
2
)=f(
1
2
)+f(
1
2
)=f(
1
2
+
1
2
1+
1
2
¡Á
1
2
)=f(
4
5
)
£¬
¡àt=
4
5
¡­£¨2·Ö£©
£¨II£©¡ßf(a1)=f(
1
2
)=-1
£¬
ÇÒf(x)+f(y)=f(
x+y
1+xy
)
£¬
¡àf(an+1)=f(
2an
1+
a2n
)=f(an)+f(an)=2f(an)
£¬

¼´
f(an+1)
f(an)
=2

¡à{f£¨an£©}ÊÇÒÔ-1ΪÊ×Ï2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
¡àf(an)=-2n-1£®¡­£¨6·Ö£©
£¨III£©ÓÉ£¨II£©µÃ£¬bn=-(1+
1
2
+
1
22
+¡­+
1
2n-1
)=-
1-
1
2n
1-
1
2
=-2+
1
2n-1
¡­£¨8·Ö£©
¡àcn=
n
2
bn+2=-n+
n
2n
+2
£¬¡­£¨9·Ö£©
Ôòcn+1-cn=-(n+1)+
n+1
2n+1
+2-[-n+
n
2n
+2]

=
n+1
2n+1
-
n
2n
-1

=
1-n
2n+1
-1
£¼0£¬
¡à{cn}ÊǼõÊýÁУ¬
¡àcn¡Üc1=-1+
1
2
+2=
3
2
£¬
Ҫʹ7cn£¼6log2 2m-18log2m¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬
Ö»Ðè6log22m-18log2m£¾
21
2
£¬
¼´4log 22m-12log2m-7£¾0£¬
¹Êlog2m£¼-
1
2
£¬»òlog2m£¾
7
2
£¬
¡à0£¼m£¼
2
2
£¬»òm£¾8
2
¡Ö11.31
£¬
¡àµ±m¡Ý12£¬ÇÒm¡ÊN*ʱ£¬7cn£¼6log2 2m-18log2m¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬
¡àmµÄ×îСÕýÕûÊýֵΪ12£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø