题目内容
函数
- A.是奇函数不是偶函数
- B.是偶函数,不是奇函数
- C.既是奇函数,又是偶函数
- D.既不是奇函数,又不是偶函数
A
分析:首先求出函数f(x)的定义域为-4≤x≤4,且x≠0,进而可得将函数化简为f(x)=
,进而分析可得f(-x)=-f(x),即可得答案.
解答:对于函数
,有16-x2≥0且|x+8|-8≠0,
解可得-4≤x≤4,且x≠0,
则|x+8|-8=x,
此时f(x)=
,有f(-x)=-
=-f(x),
则f(x)是奇函数不是偶函数,
故选A.
点评:本题考查函数奇偶性的判断,注意要求奇偶性之前要先分析函数的定义域.
分析:首先求出函数f(x)的定义域为-4≤x≤4,且x≠0,进而可得将函数化简为f(x)=
解答:对于函数
解可得-4≤x≤4,且x≠0,
则|x+8|-8=x,
此时f(x)=
则f(x)是奇函数不是偶函数,
故选A.
点评:本题考查函数奇偶性的判断,注意要求奇偶性之前要先分析函数的定义域.
练习册系列答案
相关题目