题目内容
对?a,b∈R,定义:max{a,b}=
,min{a,b}=
.则下列各式:
(1)max{a,b}=
(a+b-|a-b|)
(2)max{a,b}=
(a+b+|a-b|)
(3)min{a,b}=
(a+b+|a-b|)
(4)min{a,b}=
(a+b-|a-b|)
其中恒成立的是( )
|
|
(1)max{a,b}=
| 1 |
| 2 |
(2)max{a,b}=
| 1 |
| 2 |
(3)min{a,b}=
| 1 |
| 2 |
(4)min{a,b}=
| 1 |
| 2 |
其中恒成立的是( )
| A.(1)(2)(3)(4) | B.(1)(2)(3) | C.(1)(3) | D.(2)(4) |
∵
(a+b+|a-b|)=
=
=max{a,b};
(a+b-|a-b|)=
=
=min{a,b}
故选D
| 1 |
| 2 |
|
|
| 1 |
| 2 |
|
|
故选D
练习册系列答案
相关题目