题目内容
已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2).(1)求证:{an+1+2an}是等比数列;
(2)求数列{an}的通项公式;
(3)设3nbn=n(3n-an),且|b1|+|b2|++|bn|<m对于n∈N*恒成立,求m的取值范围.
分析:(1)由题设条件先推导出an+1+2an=3(an+2an-1)(n≥2),a2+2a1=15,由此可知数列{an+1+2an}是以15为首项,3为公比的等比数列.
(2)由an+1+2an=5•3n和待定系数法能够求出数列{an}的通项公式.
(3)由3nbn=n(-2)n,可知bn=n(-
)n,令Sn=|b1|+|b2|+…+|bn|=(
)2+2(
)3+…+(n-1)(
)n+n(
)n+1,得Sn=6[1-(
)n]-3n(
)n+1<6,由此能求出m的取值范围.
(2)由an+1+2an=5•3n和待定系数法能够求出数列{an}的通项公式.
(3)由3nbn=n(-2)n,可知bn=n(-
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
解答:解:(1)由an+1=an+6an-1,an+1+2an=3(an+2an-1)(n≥2)
∵a1=5,a2=5∴a2+2a1=15
故数列{an+1+2an}是以15为首项,3为公比的等比数列(5分)
(2)由(1)得an+1+2an=5•3n由待定系数法可得(an+1-3n+1)=-2(an-3n)
即an-3n=2(-2)n-1故an=3n+2(-2)n-1=3n-(-2)n(9分)
(3)由3nbn=n(3n-an)=n[3n-3n+(-2)n]=n(-2)n,
∴bn=n(-
)n
令Sn=|b1|+|b2|+…+|bn|
=(-
)+2(
)2+3(
)3+…+n(
)nSn
=(
)2+2(
)3+…+(n-1)(
)n+n(
)n+1(11分)
得Sn=+(
)2+(
)3+…+(
)n-n(
)n+1
=
-n(
)n+1
=2[1-(
)n]-n(
)n+1
∴Sn=6[1-(
)n]-3n(
)n+1<6
要使得|b1|+|b2|+…+|bn|<m对于n∈N*恒成立,只须m≥6(14分)
∵a1=5,a2=5∴a2+2a1=15
故数列{an+1+2an}是以15为首项,3为公比的等比数列(5分)
(2)由(1)得an+1+2an=5•3n由待定系数法可得(an+1-3n+1)=-2(an-3n)
即an-3n=2(-2)n-1故an=3n+2(-2)n-1=3n-(-2)n(9分)
(3)由3nbn=n(3n-an)=n[3n-3n+(-2)n]=n(-2)n,
∴bn=n(-
| 2 |
| 3 |
令Sn=|b1|+|b2|+…+|bn|
=(-
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
=(
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
得Sn=+(
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
=
| ||||
1-
|
| 2 |
| 3 |
=2[1-(
| 2 |
| 3 |
| 2 |
| 3 |
∴Sn=6[1-(
| 2 |
| 3 |
| 2 |
| 3 |
要使得|b1|+|b2|+…+|bn|<m对于n∈N*恒成立,只须m≥6(14分)
点评:本题综合考查数列的性质和应用,解题时要认真审题,仔细求解,注意递推式的应用.
练习册系列答案
相关题目