题目内容

已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2).
(1)求证:{an+1+2an}是等比数列;
(2)求数列{an}的通项公式;
(3)设3nbn=n(3n-an),且|b1|+|b2|++|bn|<m对于n∈N*恒成立,求m的取值范围.
分析:(1)由题设条件先推导出an+1+2an=3(an+2an-1)(n≥2),a2+2a1=15,由此可知数列{an+1+2an}是以15为首项,3为公比的等比数列.
(2)由an+1+2an=5•3n和待定系数法能够求出数列{an}的通项公式.
(3)由3nbn=n(-2)n,可知bn=n(-
2
3
n,令Sn=|b1|+|b2|+…+|bn|=(
2
3
2+2(
2
3
3+…+(n-1)(
2
3
n+n(
2
3
n+1,得Sn=6[1-(
2
3
n]-3n(
2
3
n+1<6,由此能求出m的取值范围.
解答:解:(1)由an+1=an+6an-1,an+1+2an=3(an+2an-1)(n≥2)
∵a1=5,a2=5∴a2+2a1=15
故数列{an+1+2an}是以15为首项,3为公比的等比数列(5分)
(2)由(1)得an+1+2an=5•3n由待定系数法可得(an+1-3n+1)=-2(an-3n
即an-3n=2(-2)n-1故an=3n+2(-2)n-1=3n-(-2)n(9分)
(3)由3nbn=n(3n-an)=n[3n-3n+(-2)n]=n(-2)n
∴bn=n(-
2
3
n
令Sn=|b1|+|b2|+…+|bn|
=(-
2
3
)+2(
2
3
2+3(
2
3
3+…+n(
2
3
nSn
=(
2
3
2+2(
2
3
3+…+(n-1)(
2
3
n+n(
2
3
n+1(11分)
得Sn=+(
2
3
2+(
2
3
3+…+(
2
3
n-n(
2
3
n+1
=
2
3
[1-(
2
3
)n]
1-
2
3
-n(
2
3
n+1
=2[1-(
2
3
n]-n(
2
3
n+1
∴Sn=6[1-(
2
3
n]-3n(
2
3
n+1<6
要使得|b1|+|b2|+…+|bn|<m对于n∈N*恒成立,只须m≥6(14分)
点评:本题综合考查数列的性质和应用,解题时要认真审题,仔细求解,注意递推式的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网