题目内容
已知数列{an}满足a1=| 1 |
| 2 |
| n2 |
| n2-1 |
| n |
| n+1 |
分析:由题设条件,依次令n=2,3,4,求出a1,a2,a3,a4,仔细观察a1,a2,a3,a4,寻找规律,求出an.
解答:解:由题设知a1=
=
,
a2=
×
+
=
=
,
a3=
×
+
=
=
,
a4=
×
+
=
=
,
由此猜想an=
.
故答案为:
.
| 1 |
| 2 |
| 12 |
| 1+1 |
a2=
| 4 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 22 |
| 2+1 |
a3=
| 9 |
| 8 |
| 4 |
| 3 |
| 3 |
| 4 |
| 9 |
| 4 |
| 32 |
| 3+1 |
a4=
| 16 |
| 15 |
| 9 |
| 4 |
| 4 |
| 5 |
| 16 |
| 5 |
| 42 |
| 4+1 |
由此猜想an=
| n2 |
| n+1 |
故答案为:
| n2 |
| n+1 |
点评:本题考查数列的递推公式,解题时要注意总结规律,合理猜想.
练习册系列答案
相关题目