题目内容
已知数列{an}的前n项和为Sn,且满足a1=
,an+2SnSn-1=0(n≥2).
(1)判断{
}是否为等差数列?并证明你的结论;
(2)求Sn和an;
(3)求证:S12+S22+…+Sn2≤
-
.
| 1 |
| 2 |
(1)判断{
| 1 |
| Sn |
(2)求Sn和an;
(3)求证:S12+S22+…+Sn2≤
| 1 |
| 2 |
| 1 |
| 4n |
(1)S1=a1=
,∴
=2
当n≥2时,an=Sn-Sn-1=-2SnSn-1,∴
-
=2
∴{
}为等差数列,首项为2,公差为2…(4分)
(2)由(1)知
=2+(n-1)×2=2n,∴Sn=
…(6分)
当n≥2时,an=-2SnSn-1=-2•
•
=-
∴an=
…(9分)
(3)S12+…+Sn2=
(
+
+…+
)≤
(1+
+
+…+
)=
(1+1-
+…+
-
)=
(2-
)=
-
…(13分)
| 1 |
| 2 |
| 1 |
| S1 |
当n≥2时,an=Sn-Sn-1=-2SnSn-1,∴
| 1 |
| Sn |
| 1 |
| Sn-1 |
∴{
| 1 |
| Sn |
(2)由(1)知
| 1 |
| Sn |
| 1 |
| 2n |
当n≥2时,an=-2SnSn-1=-2•
| 1 |
| 2n |
| 1 |
| 2(n-1) |
| 1 |
| 2n(n-1) |
∴an=
|
(3)S12+…+Sn2=
| 1 |
| 4 |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| n2 |
| 1 |
| 4 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| (n-1)×n |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 4n |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |