题目内容
设随机变量ξ服从正态分布:ξ~N(0,σ2),若P(ξ<2)=0.977,则P(-2≤ξ≤2)=( )
分析:画出正态分布N(0,1)的密度函数的图象:由图象的对称性可得结果.
解答:
解:由随机变量ξ服从正态分布N(0,σ2)可知正态密度曲线关于y轴对称,
而P(ξ<2)=0.977,
则P(ξ<-2)=0.023,
故P(-2≤ξ≤2)=1-P(ξ>2)-p(ξ<-2)=0.954,
故选D.
而P(ξ<2)=0.977,
则P(ξ<-2)=0.023,
故P(-2≤ξ≤2)=1-P(ξ>2)-p(ξ<-2)=0.954,
故选D.
点评:本题主要标准正态分布曲线的特点及曲线所表示的意义,结合正态曲线,加深对正态密度函数的理解.
练习册系列答案
相关题目
设随机变量ξ服从正态分布N(0,1)Φ(x)=P(ξ<x,则下列结论不正确的是( )
A、Φ(0)=
| ||
| B、Φ(x)=1-Φ(-x) | ||
| C、p(|ξ|)<a=2Φ(a)-1(a>1) | ||
| D、p(|ξ|>a)=1-Φ(a)(a>0) |
设随机变量ξ服从正态分布N(0,1),若P(ξ>1.3)=p,则P(-1.3<ξ<0)=( )
A、
| ||
| B、1-p | ||
| C、1-2p | ||
D、
|
设随机变量ξ服从正态分布N(1,δ2),若P(ξ>-2)=0.7,则函数f(x)=x2+4x+ξ不存在零点的概率是( )
| A、0.7 | B、0.8 | C、0.3 | D、0.2 |