题目内容

在△ABC中,角A,B,C所对应的边分别是a,b,c,已知(b+c):(c+a):(a+b)=4:5:6,给出下列结论①△ABC的边长可以组成等差数列数学公式数学公式④若b+c=8,则△ABC的面积是数学公式其中正确的结论序号是________.

①②④
分析:由已知可设b+c=4k,c+a=5k,a+b=6k(k>0),然后分别求出a、b、c的值,即可判断2b与a+c相等得到三边成等差数列,利用余弦定理求出角A的余弦值即可判定A为钝角,利用平面向量的数量积得运算法则求出的值,并根据面积公式即可求出三角形ABC的面积,再与题目进行比较即可.
解答:由已知可设b+c=4k,c+a=5k,a+b=6k(k>0),
则a=k,b=k,c=k,
∴a:b:c=7:5:3,∴2b=a+c,
即△ABC的边长可以组成等差数列,故①正确;
∴sinA:sinB:sinC=7:5:3,故③错误;
又cosA==-<0,
∴△ABC为钝角三角形,∴=bccosA<0,故②正确;
若b+c=8,则k=2,∴b=5,c=3,
又A=120°,∴S△ABC=bcsinA=,故④正确;
所以正确的结论序号是:①②④.
故答案:①②④
点评:本题主要考查了正弦定理以及余弦定理的运用,利用三角形的面积公式求解面积,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网