题目内容

已知f(x)=(1+x+x24(1-x)9
(1)求f(x)的展开式中x3项的系数;
(2)设f(x)=a0+a1x+a2x2+…+a17x17,求a2+a4+6+…+a16的值.
分析:(1)利用立方差公式1-x3=(1-x)•(1+x+x2)可将f(x)=(1+x+x24(1-x)9转化为f(x)=(1-x34•(1-x)5,可易求展开式中x3项的系数;
(2)f(x)=a0+a1x+a2x2+…+a17x17,通过赋值,分别令x=1与x=-1,二者联立即可求得a0+a2+a4+6+…+a16的值,再令x=0即可求得答案.
解答:解:(1)∵1-x3=(1-x)•(1+x+x2),
∴f(x)=(1+x+x24(1-x)9
=(1-x34•(1-x)5
∴f(x)的展开式中x3项的系数为14
C
3
5
(-1)3+
C
1
4
•(-1)1•15=-14;
(2)∵f(x)=(1+x+x24(1-x)9=a0+a1x+a2x2+…+a17x17
∴f(1)=a0+a1+a2+…+a17=0;①
f(-1)=a0-a1+a2-a3+…-a17=29;②
∴f(1)+f(-1)=2(a0+a2+a4+6+…+a16)=29
∴a0+a2+a4+6+…+a16=28
又f(0)=a0+0=1,故a0=1,
∴a2+a4+6+…+a16=256-1=255.
点评:本题考查二项式定理的应用,考查二项式系数的性质,突出考转化思想与查赋值法的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网