题目内容

14.已知圆x2+y2=4,点A($\sqrt{3}$,0),动点M在圆上运动,O为坐标原点,则∠OMA的最大值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

分析 设|MA|=x,则可求得|OM|,|AO|的值,进而利用余弦定理得到cos∠OMA的表达式,利用均值不等式求得cos∠OMA的最小值,进而求得∠OMA的最大值.

解答 解:设|MA|=x,则|OM|=2,|AO|=$\sqrt{3}$
由余弦定理可知cos∠OMA=$\frac{4+{x}^{2}-3}{4x}$=$\frac{1}{4}$(x+$\frac{1}{x}$)≥$\frac{1}{4}$×2=$\frac{1}{2}$(当且仅当x=1时等号成立)
∴∠OMA≤$\frac{π}{3}$.
故选:C.

点评 本题主要考查了点与圆的位置关系,余弦定理的应用,均值不等式求最值.考查了学生综合分析问题和解决问题的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网